Design, Simulation and Virtual Testing

madymo*®

Programmer’s Manual | VERSION 7.7

www.tassinternational.com

© Copyright 2017 by TASS International
All rights reserved.

MADYMO® has been developed at TASS International Software BV.

This document contains proprietary and confidential information of TASS International. The
contents of this document may not be disclosed to third parties, copied or duplicated in any
form, in whole or in part, without prior written permission of TASS International.

The terms and conditions governing the license of MADYMO® software consist solely of those
set forth in the written contracts between TASS International or TASS International authorised
third parties and its customers. The software may only be used or copied in accordance with
the terms of these contracts.

MADYMO Programmer’s Manual Release 7.7

MADYMO Manuals

An overview of the MADYMO solver related manuals is given below. From Acrobat Reader,
these manuals can be accessed directly by clicking the manual in the table below. Manuals
marked with a star (*) are also provided in hard-copy (major releases only).

Theory Manual The theoretical concepts of the MADYMO solver.

Reference Manual* Detailed information on how to use the MADYMO solver
and how to specify the input.

Model Manual* Dummy, Dummy Subsystem and Barrier Models with
simple examples.

Human Model Manual Human Models and applications that make use of Human
Models.

Tyre Model Manual Documentation about Tyre Models.

Utilities Manual User’s guide for MADYMO/Optimiser,

MADYMO/Scaler, MADYMO/Dummy Generator,
MADYMO/Tank Test Analysis

Folder Manual Describes the use of MADYMO/Folder.

Programmer’s Manual Information about user-defined routines.

Release Notes Describes the new features, modifications and bug fixes
with respect to the previous release.

Installation Instructions Description for the system administrator to install
MADYMO.

Coupling Manual Description of coupling with ABAQUS, LS-DYNA, PAM
CRASH/SAFE and Radioss and the TCP/IP coupling with
MATLAB/Simulink.

TASS International provides extensive and high quality support for its products to help you
in utilizing the software most efficiently. TASS International offers extensive hotline support
for our software products, MADYMO, PreScan and Delft-Tyre. Our hotline support can be
reached over phone as well as via email and will assist you with your questions regarding our
different software products. Your requests will be dealt with in a fast and effective manner to
support you in the continuation of your work in progress. On the website you will find your
local representative with the accompanying support contact details.

iii

www.tassinternational.com

Release 7.7

MADYMO Programmer’s Manual

Contents

MADYMO Manuals iii
1 Program set-up 1
2 General 3
2.1 Creating the user defined library libuserdefso 3
2.2 Running with user defined routines L. 3

3 MADYMO library 5
3.1 FILFG3TNO e e 5
3.2 FILMG3TNO . . . 6
3.3 TRANSGTNO 7
34 VELACGTNO e e e e e e e e 9
35 GETIDTNO o e e 9
3.6 GETPCBTNO e e e e 10
3.7 GETPTRTNO e s e e 10
3.8 WRREPFTNO e 10

4 User-defined modules 11
4.1 Introduction e e e 11
4.2 Initialising user-defined routines L. L L 11
4.3 User-defined controlroutines e 12
4.3.1 User-defined control interface example 13

4.3.2 Body - Joint configurationtable oo L. 13

4.3.3 Body and Joint identifier and name resolving 13

434 Memorystoraget e e 14

44 User-definedjoints e 14

4.5 User-definedroads e 17
4.6 User-defined FE-materials e 19
4.6.1 Input . .o e e 19

4.62 Memorystorageot e e 20

4.63 USErroutines o v i i e e e e e e e 20

4.7 User-defined FE-elements 22

5 Compiler Requirements 25

iv

MADYMO Programmer’s Manual Release 7.7

1 Program set-up

This manual is intended for the experienced MADYMO user who wants to develop his own
program modules. Some background information about the MADYMO program package is
given for those users who intend to incorporate their own force interaction models and/or
special input/output routines.

The MADYMO package is mainly written in FORTRAN. It consists of a small main program
that performs calls to subroutines followed by all these subroutines. The program needs an
input data file and produces several output files during the simulation. These output files can
be used by post-processing programs to produce graphs and tables of the model results, or to
perform additional calculations.

The user is allowed to design and add his own routines to the MADYMO package. For reasons
of maintenance, entries are made for these user-defined routines which can be divided into:

MADYMO 3D USINTFTNO control routine
USRJ13TNO kinematic joint routines
USRJ23TNO
USRJ33TNO
USRJ43TNO
USRJ53TNO
USRRD3TNO routine for defining a road profile
USRSY3TNO unit numbers offset, control activation and initialisa-

tion of kinematic joint routines

The calls to these routines are not built in the MADYMO/Solver program. The MADY-
MO/Solver program checks at runtime if the user defined library (libuserdef.so) is present in
the directory were the main xml file is run. User-defined input can be given in a separate file
referred by the USER_FILE attribute of the MADYMO element.

In general user-defined modules are developed for special purposes. It is also possible to
rewrite special user-defined routines to general purpose routines. TASS International BV can
assist you to make them part of your MADYMO program. To keep the overview of your
package create a sub-directory for every new user-defined application.

The total program set-up is briefly summarized in Fig. 1.1.

Release 7.7 MADYMO Programmer’s Manual

INITIALIZATION
INPUT SYSTEM VARIABLES
MADYMO
SET-UP EQUATIONS USER'S R
MADYMO 3D OF MOTION
PROGRAM SENTEEIL
SOLUTION
OUTPUT
OUTPUT

MADYMO 3D
LIBRARY
[

SYSTEM LIBRARY LINK

MADYMO INPUT
INPUT DATABASE

POST-PROCESSING|

optional

Figure 1.1: MADYMO Program set-up. Starting with R7.7, the MADYMO/Solver program
checks the linking stage at runtime.

MADYMO Programmer’s Manual Release 7.7

2 General

The user is allowed to design and add his own routines to the MADYMO package. This is,
however, not supported on Windows system. In the .xml input file, user-defined input can be
referred by the USER_FILE attribute of the MADYMO element. USER_FILE refers to a file in
which the user-defined input is placed.

MADYMO uses a file table to manage the usage of logical unit numbers. These unit numbers
are taken from the reserved range LUNOFF+1 to LUNOFF+TBLESZ (see subroutine USRSY3TNO in
$MADAPP/userdef/usrsy3. f). The user may shift the range of unit numbers used by MADY-
MO to prevent conflicts with unit numbers used exclusively in the user routines.

2.1 Creating the user defined library libuserdef.so

To incorporate user subroutines in the MADYMO solver, fortran source code must be compiled
and linked with MADYMO supplied libraries to create a new user defined routines library.
The steps required to create the new library are given below.

1. Place all user defined fortran source files in a temporary directory, and change to that
directory. Make sure only source files exist in this directory, and that the fortran compiler
will recognise the files as source files (i.e. *.f). Example source files are located in
<madymo_dir>/share/appl/userdef. Make sure that usrsy3.f is always included in the
source files.

2. Create a shell with the MADYMO environment by executing the command:
madymo77 -sh

3. Execute the command
<madymo_dir>/share/run/makeexec.sh *.f

This will attempt to compile the source files, and link them into the user-defined library
libuserdef.so.

4. Check that a dynamic library libuserdef.so was successfully created.
5. Copy the library libuserdef.so into the directory where you want to run the simulation.

6. Exit from the MADYMO environment with the command

exit

2.2 Running with user defined routines

Start the solver job with the command

Release 7.7 MADYMO Programmer’s Manual

madymo77 <input file>

With this method, the MADYMO/Solver locates the dynamic library in the current directory,
and uses it as the user defined library for the job.

MADYMO Programmer’s Manual Release 7.7

3 MADYMO library

In this chapter some general subroutines are described in detail. When the user develops his
own joint or force model routines or special output routine(s), using these general subroutines
is recommended. In the description of the modules (I) means integer, (D) double precision and
(C) means character.

3.1 FILFG3TNO

Purpose: Subroutine called to apply a force on a body

Usage: CALL FILEG3TNO (MODEL, NO, BOD, 0, XP, YP, ZP, FX, FY, FZ)
Parameters: None

Input: MODEL I) Code for model

BOD I) Body number i.e. internal body number

XP, YP,ZP (D) Point of application of the force, expressed in the local coor-
dinate system of body BOD

FX,FY,FZ (D) Components of the force, expressed in the local coordinate
system of body BOD

(

NO (I) Code for identification of interaction
(
(

output none

NOTES:

1. See Table A.10 of the Reference Manual for a more detailed description of table FF.

2. The variables MODEL and NO are only used for identification purposes in the file DEBUG.
For user-defined force models MODEL 23 is recommended.

3. When action and reaction forces are calculated in a user-defined force model, subroutine
FILFG3TNO must be called twice.

4. If necessary, subroutine TRANSGTNO can be used to calculate (XP, YP, ZP) and (FX, FY, FZ)
in the local coordinate system of body BOD.

Release 7.7 MADYMO Programmer’s Manual

3.2 FILMG3TNO

Purpose: Subroutine called to apply a torque on a body
Usage: CALL FILMG3TNO (MODEL, NO, BOD, 0, MX, MY, MZ)
Parameters: None
Input: MODEL (I) Code for model
NO (I) Code for identification of torque
BOD () Body number i.e. internal body number

MX, MY,MZ (D) Components of the moment vector, expressed in the local
coordinate system of body BOD
output none

NOTES:

1. See Table A.11 of the Reference Manual for a more detailed description of table MM.

2. The variables MODEL and NO are only used for identification purposes in the file DEBUG.
For user-defined joint models MODEL 23 is recommended.

3. When action and reaction torques are calculated in a user-defined joint model, subrou-
tine FILMG3TNO must be called twice.

4. If necessary, subroutine TRANSGTNO can be used to calculate (MX, MY, MZ) in the local coor-
dinate system of body BOD.

MADYMO Programmer’s Manual Release 7.7

3.3 TRANSGTNO

Purpose: Transformation of the coordinates of a given local point P connected to
body BODI1 (if BOD1 = 0 a point of the reference space) to
e the local coordinate system of body BOD2 or
e a coordinate system with the orientation of the local coordinate sys-
tem of body BOD2 (if BOD2 = 0 the reference coordinate system), but
with the same origin as the coordinate system of body BODI.
Usage: CALL TRANSGTNO(IPAR, BOD1, X1, BOD2, X2)
Parameters: None
Input: IPAR (I) Selection parameter
BOD1 (I) Body number or reference space if BOD1 =0
X1 (D) Array containing in X1(1), X1(2) and X1(3) the X, Y and Z coor-
dinates of point P in the coordinate system of body BOD1
BOD2 (I) Body number or reference space if BOD2 = 0
output X2 (D) Array containing in X2(1), X2(2) and X2(3) the calculated X, Y
and Z coordinates of point P expressed in:
e the local coordinate system of body BOD2 (IPAR =1)
e a coordinate system with the orientation of the local coor-
dinate system of body BOD2, but with the same origin as
the local coordinate system of body BOD1 (IPAR = 2)
NOTES:

1. Figure 3.1 illustrates the function of subroutine TRANSGTNO. Point P is expressed in the
coordinate system of body I. The coordinates of point P in the coordinate system of body
J are found by:

CALL TRANSGTNO(1, I, XI, J, XJ)

The coordinates of point P expressed in the coordinate system (xl’-, yg, z;) (orientation the
same as orientation local coordinate system body J) are found by:

CALL TRANSGTNO(2, I, XI, J, XI1)

Release 7.7 MADYMO Programmer’s Manual

tree structure origi

X inertial coordinate system

Figure 3.1: lllustration of the function of subroutine TRANSGTNO.

MADYMO Programmer’s Manual Release 7.7

3.4 VELACGTNO

Purpose: Calculation of the linear velocity or linear acceleration of a given local
point P, expressed in the inertial coordinate system.
Usage: CALL VELACGTNO(IPAR, BOD, X, V)
Parameters: None
Input: IPAR (I) Selection parameter for linear velocity (IPAR = 1) or linear accel-

eration (IPAR = 2)

BOD (I) Body number or reference space if BOD =0

X (D) Array containing in X(1), X(2) and X(3) the X, Y and Z coordinates
of point P in the coordinate system of body BOD (in the reference
coordinate system if BOD = 0)

output V (D) Array containing in V(1), V(2) and V(3) the components VX, VY

and VZ of the velocity or acceleration of point P, expressed in the
inertial coordinate system

NOTES:

1. BOD = 0 : velocity and acceleration are zero

2. If the components VX, VY, VZ of the calculated velocity (acceleration) must be expressed
in the local coordinate system of body I, subroutine TRANSGTNO can be used

CALL TRANSGTNO(2, 0, V, I, VI)

3.5 GETIDTNO

Purpose: Get identifier number from body or joint name

Usage: CALL GETIDTNO(TYPE, NAME, IDNR, CLEN, CDATA)

Parameters: None

Input: TYPE () Type of object (either 'BODY” or "JOINT)
NAME (C) Original full reference of the body or joint

output IDNR (I) inernal numerical identifier of the body or joint

CDATA (C) internal name identifier of the body or joint
CLEN (I) length of the CDATA character string

Release 7.7 MADYMO Programmer’s Manual

3.6 GETPCBTNO

Purpose: Get joint information: internal body and node numbers of both parent and
child
Usage: CALL GETPCBTNO(JNTNR, BODY1, NODE1, BODY2, NODE2)
Parameters: None
Input: JNTNR (I) Internaljoint number
output BODY1 (I) Parentbody number of joint
NODE1 (I) Parentnode number of joint
BODY2 (I) Child body number of joint
NODE2 (I) Child node number of joint

3.7 GETPTRTNO

Purpose: Get position of mermoy location of specific record specified (SYMBOL)
Usage: NUMBER = GETPTRTNO (SYMBOL)

Parameters: None

Input: SYMBOL (C) The name of the symbol

output NUMBER (I) The memory location in the specific array

NOTES:

1. For a list of valid SYMBOL names and for wich arrays they are valid, see subsection 4.3.4
and 4.6.2

3.8 WRREPFTNO

Purpose: Write a message to the MADYMO REPRINT file

Usage: CALL WRREPFTNO(MESSAGE)

Parameters: None

Input: MESSAGE (C) Message string that is printed in the REPRINT file
output None

10

MADYMO Programmer’s Manual Release 7.7

4 User-defined modules

4.1 Introduction

The user-defined modules are supplied as example routines, which are located in directory:
<madymo_dir>/share/appl/userdef. The user is allowed to program and link his own rou-
tine(s) to the MADYMO package. The user-defined subroutines are:

e USINTFTNO e USRJ53TNO

e USREL2TNO e USRRD3TNO
e USREP3TNO ¢ USRMM3TNO
e USREP4TNO e USRMM4TNO
e USREVS8TNO e USRMS4TNO
e USRJ13TNO e USRMV1ITNO
e USRJ23TNO e USRMV4TNO
e USRJ33TNO e USRMVSTNO
e USRJ43TNO e USRSY3TNO

When writing your own subroutines or functions, do not define names for new subroutines,
functions or common blocks ending with TNO, unless you provide them yourself.

4.2 Initialising user-defined routines

This routine must always be present in the user defined library. It handles:

e The lower bound of the logical file unit number range
e The activation of the user-defined control interface

e The number of degrees of freedom for the JOINT.USER elements

MADYMO uses logical unit numbers within the range LUNOFF+1 and higher. The user may
increase the range of logical unit numbers used by MADYMO to prevent conflicts with unit
numbers used exclusively by the user-defined subroutines. By default the value of LUNOFF is
200. The user-defined control interface is activated when the integer USRACT is not equal to
zero. The joint degrees of freedom of user-defined kinematic joints must be initialised here via
the integer JNTDOF array.

11

Release 7.7 MADYMO Programmer’s Manual

4.3 User-defined control routines

The user-defined interface routine controls the initialisation, input, output, derivatives and ter-
mination of MADYMO. The initialisation and termination are called at the start en the end of
the simulation, respectively, where the input, output and derivatives are called at each multi-
body time step. Activation is done in subroutine USRSY3TNO.

The interaction between MADYMO and the interface routine is defined using the FLAG argu-
ment. The simulation flow is broken down in the following steps:

e simulation initialisation

e FLAG = 0; user-defined initialisation

e simulation loop

(while time <= time_end) {

— FLAG = 1; user-defined output signals
— FLAG = 2; user-defined derivates

— FLAG = 3; user-defined input signals

integration of derivatives

time history and animation output

- time = time + step }
e FLAG =9; user-defined termination

e simulation termination

See the subroutine for further detail about the available inputs and outputs for each phase.
The general usage of the various phases is as follows:

FLAG = 0 Initialisation at the start of the simulation. All user-defined input must be placed in
a separate input file which filename is referred by the attribute USER_FILE in the MA-
DYMO element. The required input can be given free format. Note that character strings
must be placed between apostrophes according to the standard Fortran specifications.

FLAG =1 Output on each time step. This phase allows the user to transfer output signal
values from the SIGNAL.EXTERNAL_OUTPUT elements to the user-defined routine or
to a file. It is recommended to limit the amount of data written to a file, for this reason
the variable LTH is introduced. LTH equals .TRUE. when time history data is written.

FLAG =2 Derivatives on each time step. User-defined derivatives, joint and force models
can be placed here. The calculated forces (together with their point of application) and
torques must be expressed in the body local coordinate system. For each calculated force

12

MADYMO Programmer’s Manual Release 7.7

(subroutine FILFG3TNO) and torque (subroutine FILMG3TNO) must be called to place the
calculated forces (torques) on the related body. If action and reaction forces (torques) are
calculated, subroutines FILFG3TNO and FILMG3TNO must be called twice.

The standard MADYMO hysteresis options are not described here. However, the user
can define his own hysteresis algorithm. MADYMO library routines can be used, e.g. for
coordinate transformation calculations.

FLAG =3 Input on each time step. This phase allows the user to transfer input signal values
to SIGNAL.EXTERNAL_INPUT elements from the user-defined routine or from a file.
It is recommended to handle control or external data export in this routine. One can
request for termination when FLAG # 9 by setting the argument RETVAL equal to -1.

FLAG =9 Termination at the end of the simulation. This phase is called during the termina-
tion of MADYMO, allowing the user to write additional data and close all open files.

4.3.1 User-defined control interface example

The interface is explained by controlling an inverted pendulum. The special user defined
library is build using the command:

makeexec.sh usintf.f usrsy3.f.

For this task, the user-defined files usintf.f and usrsy3.f are needed for handling the user-
defined control interface functionality and the activation of the control interface, respectively.

The content of the file usintf.f and usrsy3.f as well as the routines being called are given below.
Note that the source files and the model related input files are not part of the distribution. The
usage of the subroutines is explained only.

4.3.2 Body - Joint configuration table

The relation between bodies and joint is defined via the configuration in the input model.
The subroutine GETPCBTNO allows the user to request attachment point information (body and
node) of both parent and child via the argument JNTNR.

4.3.3 Body and Joint identifier and name resolving

Both id and name of bodies and joints are resolved by using the subroutine GETIDTNO. On
input, the argument NAME contains the original full reference of the body or joint, argument
TYPE equals BODY or JOINT, respectively. The integer argument IDNR, represents the internal
identifier where the string argument CDATA(1:CLEN) represents the name.

13

Release 7.7 MADYMO Programmer’s Manual

4.3.4 Memory storage

The record JNRDAT contains joint data. The positions of the specific memory locations in this
record is defined by symbols. The symbol values can be retrieved with the function GETPTRTNO.

Table 4.1 list the symbol names that can be retrieved with this function.

Table 4.1: Joint specific data, with respect to the body local coordinate system and origin.

Symbol Array length Datatype Description

JNRN13 3 D Position of origin of parent body

JNRN14 3 D Position of origin of child body

JNRN15 9 D Orientation of parent body coordinate system
JNRN16 9 D Orientation of child body coordinate system
JNRN17 7 D Position degrees of freedom

JNRN18 6 D Velocity degrees of freedom

JNRN19 6 D Acceleration degrees of freedom

JNRN20 3 D Relative position of child body w.r.t. parent body
JNRN25 6 D Reaction forces and torques on parent body
JNRN26 6 D Reaction forces and torques on child body

The record BDRDAT contains body data. The positions of the specific memory locations in this
record is defined by symbols. The symbol values can be retrieved with the function GETPTRTNO.

Table 4.2 list the symbol names that can be retrieved with this function.

Table 4.2: Body specific data, with respect to the global coordinate system and origin.

Symbol Arraylength Datatype Description

BDRNO1 3 D Mass

BDRNO02 9 D inertia matrix w.r.t. the local coordinate system
BDRNO03 3 D position of centre of mass

BDRNO04 3 D position of local origin

BDRNO5 3 D linear velocity of local origin

BDRNO07 9 D rotation matrix of local coordinate system
BDRNO8 8 D angular velocity of local origin

4.4 User-defined joints

A user-defined joint can be used to create a kinematic joint type which is not available in MA-
DYMO. It requires specification of the motion, and its time derivatives, of a joint coordinate

14

MADYMO Programmer’s Manual Release 7.7

system on the child body j relative to a joint coordinate system on the parent body i in terms
of joint coordinates. The process of creating a user defined joint will be described with the
help of the kinematic joint shown in Fig. 4.1 in which two points on body j are constrained to
translate relative to body i along straight perpendicular guides.

body i

Figure 4.1: Example of a user-defined joint.

Joint coordinate systems may be chosen at will. It is recommended to choose them such that
the expressions for the relative motion of the joint coordinate systems are simple in order to
simplify the required preparations and to reduce the computation time. The origin of the joint
coordinate system on body i is chosen coincident with the intersection of the two guides. The
1;- and (;-axis are chosen parallel to the guides; the ¢;-axis is perpendicular to the #;{;-plane.
The origin of the joint coordinate system on body j is chosen coincident with one of the two
points that are constrained to translate along the guides. The 7;-axis is chosen parallel to the
line that connects the two constrained points. The {;-axis is parallel to the plane in which body
j can move relative to body i. The ¢;-axis is perpendicular to this plane.

This completes the definition of the joint coordinate systems. In the input, the orientation and
the location of the origin of the joint coordinate systems have to be specified, in accordance
with the above choice, in the same way as has to be done for standard joints.

The number of joint coordinates must equal the number of joint degrees of freedom. They
should be chosen such that the expressions for the relative motion of the joint coordinate sys-
tems are simple. For this example, the angle ¢ between the 77-axes of the joint coordinate

15

Release 7.7 MADYMO Programmer’s Manual

systems leads to simple expressions. The joint coordinates are assembled in a column matrix
g. For the current example this matrix becomes

q=[¢] (4.1)

Next the motion of the joint coordinate system fixed to body j relative to the joint coordinate
system fixed to body i must be specified. This must be in terms of the relative position vector
of the origins of the joint coordinate systems and the relative rotation matrix.

The components of the relative position vector must be given with respect to the ¢;#;(; system.
This leads for the current example to

0
dij = | Lcos¢ (4.2)
0
The relative velocity of the origins equals
0
dl] = | —Lsin¢g | ¢ =Wrq (4.3)
0

where the coefficient matrix W defines the axis of translation. The relative linear acceleration
equals

0 0 oW
dj=| —Lsing | G+ | —L§*cos¢ | = WrG+ (ﬁZ—T (4.4)
dq
0 0
The relative rotation matrix equals
1 0 0
Dj=| 0 cos¢ —sing (4.5)

0 sing cos¢

Please note that the columns of the rotation matrix equal the components of unit vectors along,
respectively, the {;-, ;- and {j-axis with respect to the {;1;(; coordinate system.

The partial derivative of the coefficient matrix W with respect to the joint coordinates equals

0
aﬁ = | —Lcos¢ (4.6)
dq 0

By definition, the relative angular velocity vector wj; is the axial vector of the skew-symmetric

matrix DijDiT ,le.,

) . 0 —ws3 wy
Dij Dij = w3 0 — w1 (4.7)
—wy Wy 0

16

MADYMO Programmer’s Manual Release 7.7

Substitution of (4.5) into (4.7) yields

w1 1
wij=| wy | = 0 |qg (4.8)
w3 0

where the coefficient matrix Wy defines the axis of rotation,

IWg
dq

=0. (4.9)

Differentiation of (4.8) with respect to time yields the angular acceleration

1
wij = 0|qg (4.10)
0

This completes the definitions and derivations which are necessary for a user defined joint.

Next, the kinematical equations must be introduced. The user can program up to 5 dif-
ferent subroutines, each with their own kinematic equations. These subroutines are named
USRJ13TNO through USRI53TNO. The first number (1 to 5) corresponds to the EXTERNAL_REF
value of the JOINT.USER element. E.g. when it is equal to 2, the user has to program the
subroutine USRJ23TNO. The arguments of these subroutine are given in Tab. 4.3.

On entry, all matrices that have to be filled, have already been initialized to zero except the
diagonal terms of CD which have been initialized to unity.

An example of a user defined joint routine (USRJ13TNO) can be found in
<madymo_dir>/share/appl/userdef.

Note that the variable SL, i.e. the distance L shown in Fig. 4.1, is assigned the value 0.15 in
subroutine USRI13TNO. It is also possible to read this value from the JOINT.USER element.
This prevents changing the subroutine USRJ13TNO for another value of L.

In addition to creating this subroutine USRJ13TNO, the degrees of freedom of the new joint
have to be specified in subroutine USRSY3TNO, the number of joint degrees of freedom has to
be assigned to JNTDOF (1, 1) and JNTDOF (2, 1).

4.5 User-defined roads

The user defined subroutine USRRD3TNO can be used to create a road surface which cannot be
specified by one of the standard road types. This subroutine is called if the ROAD.USER ele-
ment is specified. The four geometric quantities R1, R2, R3and R4, which can be specified by
the ROAD_PAR attribute, can be used in subroutine USRRD3TNO as parameters in the definition
of the road surface.

17

Release 7.7 MADYMO Programmer’s Manual

Table 4.3: Arguments of the user defined joint subroutine USRI [1-5]3TNO.

Argument Description

Q This array contains the actual values of the joint coordinates g

QT This array contains the actual values of the first time derivative of the joint coor-
dinates ¢

SD This array must be filled with the components of the relative position vector d;;

SDT This array must be filled with the components of the relative velocity vector d;;

SDTT This array must be filled with the part of the relative acceleration vector dj; which
does not depend on the second time derivative of the joint coordinates

SDQ This array must be filled with the coefficient matrix of the second time derivative
of the joint coordinates ¢ in the expression for the relative acceleration

sDQP This array must be filled with the partial derivative of the coefficient matrix Wr

with respect to the joint coordinates. The last index in the three dimensional
matrix represents the joint coordinate.

CD This array must be filled with the relative rotation matrix Dj;

CDT This array must be filled with the components of the relative angular velocity
vector wj; with respect to the ¢;7;; coordinate system

CDTT This array must be filled with the part of the relative angular acceleration vector

w which does not depend on the second time derivative of the joint coordinates
CDQ Unused
CDQP Unused

Subroutine USRRD3TNO requires the inertial z-coordinate of the road surface as a function of
the inertial x and y coordinates, i.e. z(x,y), and the partial derivatives of this function with
respect to x and y, i.e. dz/9dx and 0z/9dy. In calculating the point of contact between the tyre
and the road, the road is approximated locally by a plane which is tangent to the road surface
vertically below the wheel centre, i.e. in the direction of the negative z-axis of the inertial
coordinate system. This is only a good approximation if the road is more or less parallel to the
xy-plane of the inertial coordinate system and the radius of curvature of the road surface is
large as compared to the radius of the tyre.

As an illustration of subroutine USRRD3TNO, consider the road profile defined by (see Fig. 4.2).

z= R1 for «x < R3
z=R;—R, (1 — cos (27‘(%53)) for R3<x <R3+ Ry (4.11)
z =Ry for x> R3+ Ry

The corresponding partial derivatives of Z with respect to X and Y are given by

g—i =0 for x < Rj

0z Rz . x—R3

£ = _27T1T4 sin (27‘[(T;)) for Rz <x <R3+ Ry (4.12)
a—; =0 for x> R3+ Ry

i =0 for —co<x < o0

18

MADYMO Programmer’s Manual Release 7.7

Z

R3 R4

2 R2

R1

Y X

Figure 4.2: Illustration of a road with a cosine-shaped hole

4.6 User-defined FE-materials

Warning: The use of this option generally requires considerable expertise. The user is cau-
tioned that the implementation of any realistic constitutive model requires extensive devel-
opment and testing. Initial testing on a single element with prescribed traction loading is
recommended.

User-defined materials for 3-node membrane, 4-node membrane, 4-node shell, 4-node tetra-
hedal and 8-node hexahedral can be implemented by creating subroutines for the material
model in combination with MATERIAL.USER in the input. The options for specification of
the material parameters in the MADYMO input deck are discussed in Sec. 4.6.1. Section 4.6.2
explains the use of the data records and pointers. The implementation of the material routines
is discussed in Sec. 4.6.3.

4.6.1 Input

MADYMO allows the user to specify a material model called MATERIAL.USER for elements
of type TRIAD3, QUAD4, TETRA4 and HEXA8. When this material is selected, 30 material param-
eters may be specified by the user. The user can specify the different arguments by using the
attribute MAT_PAR followed by the values of the parameters. An example of a user material

19

Release 7.7 MADYMO Programmer’s Manual

for an 8-node hexahedral element is given below.

4.6.2 Memory storage

The record PROPER contains material data. The positions of the specific memory locations
in this record is defined by symbols. The symbol values can be retrieved with the function
GETPTRTNO. Table 4.4 lists the symbol names that can be retrieved with this function.

Table 4.4: Non-element specific data

Symbol Array length Datatype Description

PRPSOS D speed of sound through the material
PRPUSR 30 D user specified material parameters
PRPDEN D material density

4.6.3 User routines

Table 4.5 shows the user materials available in MADYMO. The files can be found in the direc-
tory <madymo_dir>/share/appl/userdef.

Table 4.5: User materials with subroutine names and element and property types.

Subroutine name File name Element type Property type

USRMM3TNO usrmm3.f TRIAD3 MEM3/MEM3NL
USRMMA4TNO usrmm4.f QUADA4 MEM4/MEM4NL
USRMS3TNO usrms3.f TRIAD3 SHELL3

USRMS4TNO usrmsd.f QUAD4 SHELL4

USRMVITNO usrmvl.f HEXAS SOLIDS (FULL_INT="OFF")
USRMV4TNO usrmv4.f TETRA4 SOLID4

USRMVSTNO usrmv8.f HEXAS SOLIDS (FULL_INT="ON")

These routines must be modified for the user-defined materials. The routines have an argu-
ment FLAG which indicates what the routine should do, i.e.

e FLAG=1

The user subroutine must specify the lengths for the items that are stored in ELEDAT
(element data array). Currently 9 items are available for the user and for every item the
user should specify the number of positions in the array ELEDAT that is needed for that
item

20

MADYMO Programmer’s Manual Release 7.7

ELDUS1 pointer for user specified data (length = LUS1)
ELDUS2 pointer for user specified data (length = LUS2)
ELDUS3 pointer for user specified data (length = LUS3)

ELDUS9 pointer for user specified data (length = LUS9)

LUS; are the number of positions in ELEDAT which are allocated for that pointer. These
must be greater or equal than zero. Only if FLAG = 1 the lengths of the items can be

changed.

Example:

C... 10 positions for ELDUS1 ->

C... ELEDAT (ELEMNR,ELDUS1+J), J = 1, 10 can be used.
LUS1 = 10

C... 5 positions for ELDUS2 ->

C... ELEDAT (ELEMNR,ELDUS2+J), J = 1, 5 can be used.
Lus2 =5

C... 0 positions for ELDUS3-ELDUS9
LUS3 =0
LUS4 = 0
LUS5 = 0
LUS6 = 0
LUS7 = 0
LUS8 = 0
LUS9 = 0

e FLAG=2

Initialisation of element data. FLAG=2 is called once per simulation at the start. The
elements should be initialised during FLAG=2.

For all user materials initialisation of PROPER(PRPSOS) is required. This is the speed
of sound of the material and is used for calculation of the critical time step (Courant
criterion) of the elements with the user materials.

For some user materials, extra initialisation is required. For 8-node hexahedral elements
with reduced integration (USRMV1TNO), 4-node membrane elements with reduced integra-
tion (USRMM4TNO) or 4-node shell elements (USRMS4TNO) it is required that the hourglass
stiffness ELEDAT (ELEMNR, ELDHST) is specified. The hourglass stiffness is used for the
calculation of the hourglass stabilisation forces.

For a linear elastic isotropic material the modulus of elasticity can be used successfully.
This is demonstrated in the example routine USRMV1TNO, USRMM4TNO and USRMS4TNO.
However, when dealing with strong non-linear material behaviour, resulting in a large
variation of the material stiffness, some experimentation with the optimum stiffness
specified by the programmer may be necessary. The hourglass stiffness specified by the
programmer may be updated every integration step.

21

Release 7.7 MADYMO Programmer’s Manual

e FLAG=3

Execution phase. During FLAG=3 the stresses and energy of the materials must be calcu-
lated.

The FE-integration cycle consists of four steps. In the first step the element strains (and
incremental strains) are computed from the nodal displacements. The second step deals
with the computation of the element stresses using the elements strains, or strain incre-
ments. With these stresses the nodal forces and moments are obtained during the third
step. Finally the fourth step is the time integration. The nodal accelerations are calcu-
lated from the current nodal forces and nodal masses. The nodal velocities and nodal
displacements are updated using these accelerations.

When implementing a new material the actual material model is realised in the calcula-
tion of the stresses due to the strains. Both strains and incremental strains are available.
The material model should result in stresses which are dual with the strains mentioned.
For HEXAS8 and TETRA4 elements the strains and stresses are expressed in the reference
space coordinate system. For all other elements the strains and stresses are expressed in
the local coordinate systems of the elements.

The total internal energy and the dissipated energy due to the user materials should also
be calculated in the user routines. Note that the elastic energy is the total internal energy
minus the dissipated energy. If this is not done in a correct way, the energy balance in
the energy output will be incorrect.

In the supplied user routines with the MADYMO distribution, linear isotropic material
behaviour is implemented as an example.

4.7 User-defined FE-elements

Warning: The use of this option generally requires considerable expertise. The user is cau-
tioned that the implementation of any finite element requires extensive development and test-
ing. Initial testing on a single element with prescribed traction loading is recommended.

Table 4.6 shows the user elements available in MADYMO. The user files mentioned there
(usrel2.f, usrep3.f, usrep4.f and usrev8.f) can be found in the directory: <madymo_-
dir>/share/appl/userdef. Under the PART XML element, the element type is linked using
material reference and property reference as specified in Tab. 4.6 for user-defined elements.
An example of an eight-node hexahedral element is given below:

The property definition must be specified under the corresponding PROPERTY element. Ma-
terial data must be defined under the MATERIAL.USER element (see Sec. 4.6).

The subroutines USREL2TNO, USREP3TNO, USREP4TNO and USREV8TNO must be modified for the
user-defined element. The routines have an argument FLAG which indicates what the routine
should do, i.e.,

22

MADYMO Programmer’s Manual Release 7.7

Table 4.6: User FE-elements with subroutine names and property name.

Element type Property type Subroutine name File name
2-node line USERL2 USREL2TNO usrel2.f
3-node line USERL3 USREL2TNO usrel2.f
3-node plane USERP3 USREP3TNO usrep3.f
4-node plane USERP4 USREP4TNO usrep4.f
8-node volume USERVS USREVSTNO usrev8.f

FLAG =1 The user subroutine must specify the lengths for the items that are stored in ELEDAT
(element data array). Currently 13 items are available, and for every item the user should
specify the number of positions in the array ELEDAT that is needed for that item:

ELDTST pointer for time step (LTST)

ELDBLK pointer for bulk modulus of element (LBLK)
ELDTHK pointer for thickness of element (LTHK)
ELDMAS pointer for mass of element (LMAS)

ELDUS1 pointer for user specified data (LUS1)
ELDUS2 pointer for user specified data (LUS2)

ELDUS9 pointer for user specified data (LUS9)

LTST, LBLK, LTHK, LMAS, LUSi are the number of positions in ELEDAT which are allocated.
These must be greater than or equal to zero.

LTST must always be set on 1.

LBLK and LTHK must be defined if contacts of type FE_FE or MB_FE are used. LTHK does
not have to be defined for USERL2 and USERV8 elements. LMASS must be defined if accel-
eration loads are used. The lengths (LTST, LBLK, LTHK etc.) must be specified per material
(not per element). The user routines are called per material (MATNR is the material num-
ber).

Only if FLAG = 1 the lengths of the items can be changed.

Example:
C... 1 position for ELDTST
LTST = 1
C... 1 position for ELDBLK
LBLK =1
C... 1 position for ELDTHK
LTHK =1
C... 1 position for ELDMAS
LMAS =1
C... 10 positions for ELDUS1
C ELEDAT (ELMNR, ELDUS1+]), J = 0, 9 can be used.
LUS1 = 10
C... ® positions for ELDUS2-ELDUS9

23

Release 7.7 MADYMO Programmer’s Manual

LUS2 =
LUS3 =
LUS4 =
LUS5 =
LUS6 =
LUS7 =
LUS8 =
LUS9 =

@ oo

FLAG =2 Initialization of element data.

FLAG = 2 is called once per material at the starting time of the simulation. The el-
ements must be initialized during FLAG = 2. The time step must also be calculated
(ELEDAT(ELEMNR, ELDTST)) and the array with nodal masses must be updated for the
user elements (NMASS and NRMASS). In TOPOL the topology of the elements is stored.

If necessary, the arrays ELEDAT (ELEMNR,, ELDBLK), ELEDAT (ELEMNR,, ELDTHK) and / or ELEDAT (ELE!
must also be calculated (see FLAG = 1). Changing these values during FLAG = 3 has no
effect on the simulation.

Note that the order of the elements and nodes are different in the subroutine in compar-
ison with the input.

FLAG =3 Execution phase.

24

During FLAG = 3 the nodal force must be calculated. The element nodal forces should be
added to FNODE and FRNODE. For variable time step, ELEDAT (ELEMNR, ELDTST) can also be
recalculated.

MADYMO Programmer’s Manual

Release 7.7

5 Compiler Requirements

MADYMO provides the ability to compile and link user defined Fortran routines. The require-
ments for the Fortran compiler are the following:

Platform-ID

Platform

Fortran compiler version
command for version

linux26-x86_64

Linux x86_64

ifort -V

PGI compiler pgf90 6.1-6
pefa0 -v

On linux, the user defined routines have been tested to work with g77/gfortran versions 3.2.3,

3.35and 4.2.1.

25

	MADYMO Manuals
	1 Program set-up
	2 General
	2.1 Creating the user defined library libuserdef.so
	2.2 Running with user defined routines

	3 MADYMO library
	3.1 FILFG3TNO
	3.2 FILMG3TNO
	3.3 TRANSGTNO
	3.4 VELACGTNO
	3.5 GETIDTNO
	3.6 GETPCBTNO
	3.7 GETPTRTNO
	3.8 WRREPFTNO

	4 User-defined modules
	4.1 Introduction
	4.2 Initialising user-defined routines
	4.3 User-defined control routines
	4.3.1 User-defined control interface example
	4.3.2 Body - Joint configuration table
	4.3.3 Body and Joint identifier and name resolving
	4.3.4 Memory storage

	4.4 User-defined joints
	4.5 User-defined roads
	4.6 User-defined FE-materials
	4.6.1 Input
	4.6.2 Memory storage
	4.6.3 User routines

	4.7 User-defined FE-elements

	5 Compiler Requirements

